
A Finite Concave Minimization Algorithm Using
Branch and Bound and Neighbor Generation

H A R O L D P. B E N S O N and S E R P I L SAYIN*
Department of Decision and Information Sciences, University of Florida, Gainesville,
FL 32611-2017, U.S.A.

(Received: 21 May 1992; accepted: 18 October 1993)

Abstract. In this article we present a new finite algorithm for globally minimizing a concave function
over a compact polyhedron. The algorithm combines a branch and bound search with a new process
called neighbor generation. It is guaranteed to find an exact, extreme point optimal solution, does not
require the objective function to be separable or even analytically defined, requires no nonlinear
computations, and requires no determinations of convex envelopes or underestimating functions.
Linear programs are solved in the branch and bound search which do not grow in size and differ from
one another in only one column of data. Some preliminary computational experience is also
presented.

Key words. Concave minimization, branch and bound, global optimization.

I. Introduction

The purpose of this article is to present a new algorithm for solving the concave
minimization problem (P) given by

min f(x), subject to x E X ,

where X is a nonempty, compact polyhedral set in R n, and f is a real-valued
concave function on some open set Y in R n that contains X. Problem (P) may
have many locally optimal solutions which are not globally optimal, so that it
represents a type of global optimization problem [8]. However, it is well known
that there exists an extreme point of X which is a globally optimal solution of
problem (P). Let m denote the optimal objective function value of problem (P).

Problem (P) has been the subject of intense interest for almost 30 years. There
are at least two reasons for this. First; large classes of important decision models
arising from a variety of applications lead to formulations involving the minimiza-
tion of concave functions over polyhedra. Included in these applications are
various problems involving economies of scale, production planning, and en-
gineering design, to name a few. Second, many optimization problems which
originally are not concave can be transformed into equivalent concave minimiza-
tions over polyhedra, including zero-one integer programming problems, bilinear
programming problems, fixed charge problems, and linear complementarity
problems. Surveys of the applications and importance of problem (P) can be

* Current affiliation: Management Department, Bilkent University, Ankara, Turkey.

Journal of Global Optimization 5: 1-14, 1994.
(~ 1994 Kluwer Academic Publishers. Printed in the Netherlands.

2 H.P. BENSON AND S. SAYIN

found, for instance, in Pardalos and Rosen [14, 15], Horst [6], and Horst and Tuy
[8].

From the viewpoint of computational complexity, the concave minimization
problem (P) is NP-hard, even in the special case of minimizing a quadratic
concave function over a very simple polyhedron such as a hypercube [16].
However, complexity results of this nature characterize worst-case instances.
Hence the search for more practical algorithms for globally solving problem (P)
remains an important undertaking.

Current methods for solving problem (P) usually use either cutting planes,
extreme point ranking, inner approximation, outer approximation, branch and
bound, or a combination of these approaches. A survey of the algorithms
available for solving problem (P) will not be given here. Instead, the reader is
referred to McCormick [11], Heising-Goodman [3], Rosen [18], Horst [5], Benson
[1], Pardalos and Rosen [14, 15], Horst [6], and Horst and Tuy [8] for com-
prehensive discussions of these algorithms.

In this article we present a finite algorithm for solving the concave minimization
problem (P). The algorithm finds a globally optimal extreme point solution for
problem (P) by combining a branch and bound search with a neighbor generation
process. The neighbor generation process helps to generate incumbent solutions
and to ensure that the algorithm is implementable and convergent. In addition,
the algorithm has the following advantages:

(i) It finds an exact, extreme point optimal solution.
(ii) It does not require f to be separable or even analytically defined.

(iii) It requires no nonlinear computations and no determinations of convex
envelopes or other underestimating functions.

(iv) It solves linear programming problems in the branch and bound search which
do not grow in size and differ from one another in only one column of data.

(v) It avoids solving some linear programs through the use of a fathoming
procedure.

Part of the motivation for developing the algorithm comes from previous work
by Soland [19], Horst [4], and Benson [1]. The algorithm is similar in certain
respects to the algorithms presented in these papers. However, important
differences exist. Furthermore, the convergence of the algorithm given here is
guaranteed in a different way. Therefore, we will present the algorithm in its
entirety without assuming any knowledge of these algorithms.

The plan of this article is as follows. In Section 2 certain theoretical pre-
requisites needed for developing the algorithm are presented. In Section 3 the
new algorithm for solving problem (P) is presented, its convergence properties
are shown, and its computational benefits are reviewed. Some preliminary
computational experience with the algorithm is reported in the final section.

2. Theoretical Prerequisites

We shall assume henceforth without loss of generality that X = {x ~ R n I AX <= b },

BRANCH AND BOUND AND NEIGHBOR GENERATION 3

where A is a p x n matrix and b ~ R p. We shall also assume familiarity with
certain basic concepts commonly used in global optimization, including the
notions of an n-dimensional simplex (or, more briefly, an n-simplex) a vertex of an
n-simplex, a partition of a subset of R n, a radial subdivision of an n-simplex, and
the convex envelope of a lower semicontinuous function on a compact convex
subset of R n. Definitions and discussions of these concepts can be found, for
instance, in [8].

One of the key procedures used in the algorithm to be presented for problem
(P) involves computing a lower bound for f over S A X for an arbitrary n-simplex
S. To compute this lower bound, the algorithm finds an extreme point of X which
minimizes the convex envelope fs of f on S over X. It is well known (cf. [4, 8])
that fs is affine over both S and R n, and that it can be found by solving a system
of linear equations. However, the algorithm to be given finds the minimum of fs
over X and an extreme point of X which achieves this minimum without requiring
the explicit determination of the function fs. To achieve this, it relies upon the
following result.

T H E O R E M 1. Let S C_ Y be an n-simplex with vertices v ~ v 1 , . . , , V n, and let
fs: Rn---> R be the convex envelope o f f on S. Consider the linear program (Ix)
given by

min fs(X) , subject to x E X ,

and the linear program (Px) given by

min ~ f(vi)Ai ,
i=O

subject to ~ (Avi)Ai <= b ,
i = 0

~ A i = l .
i = 0

Let A denote the feasible region for the linear program (P~).
(i) f f ,(E A, then ~ = Eino fti vi belongs to X and fs(~) = Ein0 f(vi)Ai. Converse-

ly, if ~ E X , then there exists a unique A E A such that ~=Zinof t i vi which,
furthermore, satisfies fs (fc) = E in-_ o f(vi) Ai.

(ii) I f A is an extreme point of A, then ~ = Ein0 fti vi is an extreme point of X.
Conversely, if fc is an extreme point of X, then the unique ~ ~ A such that
.~ = Hi= 0 Air is an extreme point of A.

(iii) The optimal values of the linear programs (Px) and (P~) are equal. I f A* is
an optimal solution for problem (Pa), then x* = Z in o A* v i is an optimal solution for
problem (Px). I f x* is an optimal solution for problem (Px), then the unique A* ~ A
such that x* -- E/no A*v ~ is an optimal solution for problem (Pa).

Proof. (i) Assume that A CA. Let ~ = Ein0 Air/. Since Zin0 (Avi)fti <- b, the
definition of ~ implies that A~ _-<b, i.e., ~ E X. From [4, 8], fs is an affine

H . P . B E N S O N A N D S . S A Y I N

function and satisfies fs(V ~) =f(v~), i = O, 1 , . . . , n. Therefore, from the definition
n ^ i n ^ i n

of 2, fs(2) =fs(Zi=o hiv) = Ei= 0 hffs(V) = E/= 0 hif(vg).
To show the converse statement in (i), assume that 2 E X. Since S is an

n-simplex, the vectors v i, i--O, 1 , . . . , n, are affinely independent. For each
i = 0, 1 , . . . , n, form the vector w g E R "+1 whose first n entries equal those of v ~
and whose (n + 1)st entry is one. Then w i, i = 0 , 1 , . . . ,n are linearly in-
dependent vectors in R n+l. Therefore, they form a basis for R n+l. Let)3 E R n~l
denote the vector whose first n entries equal those of 2 and whose (n + 1)st entry
is one. Then, since 33 E R "+a, there exists a unique h ~ R n+l such that 33 =

n ^ i ^ n ^ i n Eg= 0 h~w. This implies that x = E~= 0 h~v and Ei= 0 '~i = 1. Furthermore, since
2 E X, Ei~ o (Av!)~ i = A ET= 0 hi v i= A 2 <= b: Therefore, h E A. Finally, since fs is
affine and satisfies fs(V i) =f(vi) , i = 0, 1 , . . . , n, we obtain fs(YC) = fs(Ei"=0 hi vi) =

n ^ i n
Ei=0 hffs(V) = Z,= 0 hff(vi).

n ^ i (ii) Assume that h is an extreme point of A. Let 2 = 2~=0 h~v. Then, by part
(i), 2 ~ X. Since 2 E X, again using part (i), it follows that no ~ ~ A, ~ ~ A, exists
such that 2 = Ei~o h~ v~.

Suppose that 2 is not an extreme point of X. Then, since 2 ~ X , for some
points x 1, x 2 ~ X distinct from s and for some 0 ~ (0 , 1), 2 =Oxa+ (1 - O) x 2.

X 2 ~ n Since x ~, ~ X, by part (i), for each] = 1, 2, x] 21=o "~ vi for some h 1, h e ~ A.
Therefore,

=0 21~:vi"[-(1--O) ~ t~2V i
/ = 0 i = 0

= s [Oh[+(1-O)h2ilv i
i = 0

= s [0h' + (1 - O)h2]i vi ,
i = 0

where, by convexity of A, [0,~1 + (1 - 0)~ 2] E A. Since no h ~ A , h # A, exists
n - i such that 2 = Ei= 0 h~v, this implies that h = 0h x + (1 - 0),~ 2. Therefore, h = ,~a =

h 2, since h is an extreme point of A. On the other hand, since x j ~ 2, j = 1, 2,
h! ~ ~,] = 1, 2. This contradictioh implies that the assumption that 2 is not an
extreme point of X must be false.

To show the converse statement in (ii), assume that 2 is an extreme point of X.
Let A be the unique element of A which satisfies 2 = E~ o hiv ~.

Suppose that h is not an extreme point of A. Then, since ,~ E A, for some points
/ ~ 1 , / ~ 2 ~ A distinct from ,~ and for some 0 E (0, 1), h = 0/~ 1 -~ (1 - 0)/~ 2. Then

n
fc =

i = 0

= 2 [0~ 1 + (1-O)h2] iv i
i=O

B R A N C H A N D B O U N D A N D N E I G H B O R G E N E R A T I O N 5

:0 ~ A~vi-C (1--O) ~ A2iv i
i = 0 i=O

= Ox 1 + (1 - O)x 2 ,

where, for each j = 1, 2, x j = Y'/C0 A{ vi. By part (i), x j ~ X , j = 1, 2. Also, since
n ^ i x j A j ~ A, j = 1, 2, and A is the unique element of A satisfying 2 = r,~=0 Air, ~ 2,

j = 1, 2. On the other hand, since 2 is an extreme point of X and 2 = Ox I + (1 -
0)x 2, 2 = x 1= x 2. This contradiction implies that the assumption that A is not an
extreme point of A is untenable, and the proof of part (ii) is complete.

(iii) Assume that A* is an optimal solution for problem (PA). Let x * =
n , i

Zi= 0 A iv , and let Y be an arbitrary element of X. Then, by part (i), x* E X and,
for some unique A E A, 2 = Zi~=o X,.v i. Since A* is an optimal solution for problem
(in,),

i = 0 i = 0

From part (i), fs(X*) E~=0 f (v i)A , andfs(X-) = , i - : n Z i = 0 f (o)1~ i . Therefore, from (1),
fs(X*) <=fs(~. This implies that x* is an optimal solution for problem (Px). Also,
since fs(X*)= E/"=0 f (v i)M], the optimal values of problems (Px) and (P,) are
equal.

Assume that x* is an optimal solution for problem (Px). Let A*E A be the
n , i unique element of A satisfying x* = E i= 0 A i r . Let X be an arbitrary element of A.

Then, by part (i), 2 = Ei~ 0 A-~v i belongs to X. Since x* is an optimal solution for
problem (P~), this implies that fs(x*) _-<fs(X-). From part (i), fs(X*) = Zi= 0 " f(vi)Ai*

n n n
and f s (2) = Zi= 0 f (v i)Ai . Therefore, Zi= 0 f (vi)A * <-_ r.i= 0 f (vi)Xi . This implies that
A* is an optimal solution for problem (P~), and the proof is complete.

Notice from Theorem 1 that to solve the linear program (Px), the linear program
(P~) can be solved instead. In particular, the optimal value of problem (P~) equals
the optimal value of problem (Px), and for any optimal extreme point solution
A * E A for problem (PA), x*=[Ei"=oA*Vi] E X is an optimal extreme point
solution for problem (Px). The algorithm will make repeated use of these facts to
find lower bounds and extreme points of X which achieve these lower bounds.

3. The Algorithm

3.1. ALGORITHM STATEMENT

In each step k of the algorithm, a global lower bound LB k for m is found via
branch and bound. To accomplish this, first an initial n-simplex S O is chosen that
contains X and is a subset of Y. Then, in a typical step k, a radial subdivision of a
sub-n-simplex S k-I of S O is performed. This yields a partition T k of S k-1 and a

6 H.P . BENSON AND S. SAYIN

new partition Qk of S O of the form Qk = (ak-l\sk-I) I.J T k, where Qk-1 is the

partit ion of S O obtained from step k - 1. The partition Qk of S O consists of a set
of n-simplices denoted {S j I J E I(Qk)}, where I(Q k) is a finite index set. For each
n-simplex S j in Qk that does not belong to T k, a lower bound wj. for the minimum

of f over S j f3 X is available from some previous step. For each n-simplex S j in
Qk that belongs to T k, a lower bound wj for the minimum of f over S j fq X is
computed in step k. Whether or not the value of wj. is computed prior to or during
step k, a linear programming problem of the form (PA) (see Theorem 1) is solved
to help compute it. To find the global lower bound LB k for m, the algorithm
computes the minimum wj of the values wj, j E I(Qk), and sets LB k = wj.

The neighbor generation process used in the algorithm helps primarily to
ensure that the algorithm is implementable and convergent. As a by-product,
however, it helps to generate incumbent solutions.

The neighbor generation process is invoked in a typical step whenever an
extreme point of X is found which will serve or is being considered for serving as
the basis of a radial subdivision of some sub-n-simplex in the next step. When
such an extreme point x is found, the neighbor generation process is invoked to
search among all of the neighboring extreme points of x in X for those which have
not yet served as vertices of any sub-n-simplex of S O created thus far in the
algorithm, z~ '" . L is maintained throughout the algorithm which, at any given
time, stores all extreme points of X found via the neighbor generation process
which have not yet served as vertices of a sub-n-simplex of S O thus far created by
the algorithm.

In a typical step k, the extreme point x] of X found from solving the linear
program (Px) that was solved to help compute LB k = w] is used as the basis of the
next radial subdivision in the next step. However, if xj has already served as a
vertex of some sub-n-simplex of S ~ the algorithm examines the list L. If L -- 0,
the algorithm terminates since, as we shall see (Theorem 2), this guarantees that
all extreme points of X have been found. If L ~ 0 , elements Y of L are
individually removed from L until one is found, if possible, which can serve as the
basis of the next radial subdivision. To qualify for this, 2 must fail a fathoming
test. In this way, each step k either finds an extreme point of X for use in a radial
subdivision in the next step, or, failing to do so, terminates with L = 0.

When the algorithm must remove points from L for consideration for use as the
basis of a radial subdivision, the neighbor generation process is invoked for each
such point. The neighbor generation process is also invoked whenever an extreme
point of X is successfully found for actual use in the next radial subdivision,
regardless of whether it was found from computing LB k or from the list L.

As linear programs of the form (P~) are solved and as the neighbor generation
process is invoked, the algorithm identifies various extreme point feasible
solutions of problem (P). Each step k computes an upper bound UB k for m given
by the minimum objective function value in problem (P) of all such points thus
far encountered. Throughout the algorithm, for each k, a record is kept of an

BRANCH AND BOUND AND NEIGHBOR GENERATION 7

extreme point x c of X (the incumbent solution) which satisfies f (x c) = UB k . Thus,

as a by-product of the neighbor generation process, incumbent solutions may be
found which might not otherwise have been detected. Whenever LBg = UBk, the
algorithm terminates.

We may now give a formal statement of the algorithm. In the algorithm
statement, VL is a list maintained by the algorithm which, at any given time,
stores all points that have served or have been considered for serving as a vertex
of a subsimplex of S O created by the algorithm.

Step 0

0.1. Choose an n-simplex sO___ Y such that XC_ S O and let Q 0 = {sO}. Let the
vertices of S~ be {v ~ v 1, , vn} . S e t N = O a n d V L = { v ~ 1, , v"}, For each
i E {0, 1 , n} for which v i ~ X , set N = N U {v i} and generate the set E i of
extreme points of X adjacent to v i in X which do not belong to VL. For each
i ~ {0, 1 , . . . ,n} for which v i ~ X , set Ei =t~. Set L = u/n0 E i. If N = ~ , set
UB = + ~ and go to step 0.2. If N # 0, choose x C E argmin{ f (x) Ix E N U L} and
set UB =f(xC).

0.2. Find the optimal value q0 and an extreme point optimal solution h * E A
n , i for the linear program (Px) (see Theorem 1). Let x* = E~= 0 hi v , set w 0 = q0, and

set 2-0 = x*. Genera te the set E of extreme points of X adjacent to 2-~ which do
not belong to VL. If EC_L, go to S t e p 0.3. Otherwise, set L = L U E and
continue.

0.3. Set LB 0 = w 0. Set UB 0 = min{UB, {f(x) Ix ~ {k -~ LJ E}}. If UB ~ + ~,
choose 2 ~ argmin{f(x~), { f (x) Ix E {2 -~ U E}} and set x c = 2. Otherwise, choose
2 ~ argmin{f(x) Ix ~ {2 ~ U E} and set x ~ = 2. If LB o = UB0, conclude that x c is
an optimal solution for problem (P) and stop. Otherwise, set k = 1 and go to step
k.

Step k, k --- 1. At the beginning of step k, a partition Q~-I of S O is available
f rom the previous step. Also available for each n-simplex S j E Qk-X are a lower
bound wj for the minimum o f f over S j C) X and an extreme point x j E X found in
the process of computing this lower bound. Assume that S k-1 ~ Q~-~ denotes an
element of Qk-a which contains the point 2 k-1 computed in the previous step.

k.1. If s (~ L, remove s from L. Using 2 k-1 ~ S k-1 as a basis, perform a

radial subdivision of S k-1 to obtain a partition T ~ of S k-1. Set VL = V L U {s
k.2. For each n-simplex S j E T k :

(i) With v ~, i = 0, 1 , . . . , n set equal to the vertices of S j, find the optimal
value qj and an extreme point optimal solution h* E A for the linear program (P,)
(see Theorem 1);

n , i (ii) Set x i = E~= 0 Air ; and
(iii) Set w i = max{qj , Wk_x}.
k.3. Set UB k = min{UBk_a, {f(x j) [S j E Tk}}. If UB k = f (x j) for some j such

that S j E T k, set x ~ = x j.
k.4 . Set Qk = (Qk-a\sk-X) U T k.

8 H . P . B E N S O N A N D S. S A Y I N

k.5. Let w; = min{wj [j E I(Qk)), and set LB k = w].
k.6. If LB k = UBk, conclude that x c is an optimal solution for problem (P) and

stop. Otherwise, continue.
k.7. (i) If x]ff .VL, set s =X] and go to step k.8. Otherwise, continue.

(ii) If L = 0, conclude, that x c is an optimal solution for problem (P) and stop.
Otherwise, remove any point ~ from L and continue.

(iii) Find any n-simplex S i E Qk which contains s If wj _---UBk, set s = s and
go to step k.8. Otherwise, continue.

(iv) Generate the set E of extreme points of X adjacent to E which do not
belong to VL. Set VL = VL U {s If E _C L, go to step k. 7(ii). Otherwise, set
L = L U E, find 2 E argmin{f(x~), {f(x) [x E E}}, set x c = 2, set UB k = f(xC), and
go to step k. 7(ii).

k.8. Generate the set E of extreme points of X adjacent to s which do not
belong t oVL. If E C L, set k = k + 1 and go to step k. Otherwise, set L = L U E,
find 2 ~ argmin{f(xC), {f(x) [x E E}}, set x ~ = 2, set U B k -----f(xC), set k = k + 1,
and go to step k.

The set N in step 0.1 stores each vertex v i of S O which is also an extreme point
of X. Since S O D X, it is easily shown that for any vertex v i of S ~ if v i E X, then v i
is an extreme point of X. Step 0.1 relies on this fact to construct N.

In step k. 7(iii), if the lower bound w i for the simplex S f containing the point s
removed from L exceeds UBk, then control is passed to step k.7(iv). In step
k. 7(iv), the usual neighbor generation process for s and the associated incumbent
update are performed, and s is added to the list VL. However , control then
passes to step k. 7(ii) rather than to step k + 1. In particular, no radial subdivision
of the simplex S i is performed, and no linear programming problems Of the form
(Px) that would be associated with this radial subdivision are solved. In this sense,
the simplex S i is fathomed. Notice that the point s is not used at this stage as a
basis of a radial subdivision in the next step. However, since it was a candidate for
such a use, s is added to the set VL.

3.2. CONVERGENCE

We will now show that the algorithm finds an optimal extreme point solution for
problem (P) in a finite number of steps. To show this, the following result is
needed.

T H E O R E M 2. For any k >- 1, if L = 0 in step k. 7(ii) of the algorithm, then VL
contains every extreme point of X.

Proof. Assume that k _-__ 1. To prove the theorem, we will prove the contraposi-
tive. Therefore , assume at step k.7(ii) that an extreme point 2 E X exists which
does not belong to VL. Then either (1) at least one extreme point of X adjacent
to 2 belongs to VL or (2) no extreme point of X adjacent to 2 belongs to VL.

Case 1. At least one extreme point x of X adjacent to ~ belongs to VL. For any

BRANCH AND BOUND AND NEIGHBOR GENERATION 9

extreme point y of X added to VL through step k. 7(ii) of the algorithm, from
steps 0.1 and 0.2 and from steps w.1, w.7, and w.8, l<=w<-k, the neighbor
generation process guarantees that all extreme points of X adjacent to y which do
not belong to VL are contained in L. Since x is an extreme point of X adjacent to
$ which belongs to VL in step k. 7(ii), and 2 ~ VL, this implies that $ E L. Hence,
in this case, L r 0.

Case 2. No extreme point of X adjacent to 2 belongs to VL. Consider the
extreme point y0 E X. From step 1.1, y0 E VL. Since X is a polyhedron, there
exist a finite number of extreme points y l y 2 , . . . , yt of X such that 2 is adjacent
to y l , yh is adjacent to yh+X for each h = 1, 2 , . . . , t - 1, and yt is adjacent to E ~
Let Y = {y E {yl, y2 , y t } l y ~ . V L }. Since yl is adjacent to 2 and no extreme
point of X adjacent to 2 belongs to VL, ya ~ V L . Therefore, I r 0 and we may
choose an integer h* such that

h* =max{h E {1,2 , t } l y h ~ V L } .

If h * < t, then yh* is adjacent to yh*+l E WE. If h * = t, then yh* is adjacent to
2-0 E VL. In either case, yh* is an extreme point of X which does not belong to VL
but which is adjacent to an extreme point of X which does belong to VL. Then,
by the same reasoning as used in Case 1 for 2, it follows that yh* ~ L. Since this
implies that L r 0, the proof is complete.

We may now show the following result.

T H E O R E M 3. Whenever the algorithm terminates, the algorithm's current incum-
bent solution x c is an extreme point optimal solution for problem (P).

Proof. Consider any step k, k >= O, of the algorithm. From step 0.3 or, for
k = 1, from step k.5,

LB k = min{wj I J E / (O h) } . (2)

For each j E I(Qk), by Theorem 1, qj, calculated in step k.2(i) for some k =< k, is
a lower bound for the minimum o f f over X A S j. In addition, for any sets A and
B such that A 7 B, any lower bound for the minimum of f over B is a lower
bound for the minimum o f f over A. The latter two statements imply that for each
j E I(Qk), wj, calculated in step k.2(iii) for some k _--< k, is a lower bound for the
minimum mj of f over X fq S J. Therefore,

min{wj I J E i(Qk)} < min {mj t J E I(Qk)}. (3)

The set {Sil j EI (Qk)} is a partition of S O DX. This implies that the right-hand-
side of inequality (3) is identical to m. From (2), this implies that LB k =< m.

Suppose that the algorithm terminates in step k. Then either (1) LB k = UB~ or
(2) L = ~.

Case 1. LB k = U B k . Since UB k =f(xC), where x c is the current incumbent

10 H. P. BENSON AND S. SAYIN

extreme point solution, it follows that in this case, LBk=f(xC) . From the
discussion above, LB k =< m. Therefore, f (x c) <= m. Since x ~ E X , this implies that
f (x ~) = m, so that x c is an extreme point optimal solution for problem (P).

Case 2. L = 0. Then k => 1, the algorithm terminates in step k. 7(ii), and, from
Theorem 2, VL contains every extreme point of X. From steps 0.1, 0.3 and steps
k.1, k.3, k.7, and ft.8, 1 <= fc <- k, for any extreme point :~ of X contained inVL by
step k.7, UBk<=f(2). Since UBk=f(xC) , where x c is the current incumbent
extreme point solution, and since VL contains every extreme point of X, this
implies that f (x ~) <=f(x) for all extreme points x of X. Since problem (P) has an
optimal solution which is an extreme point of X, it follows that x c is an extreme
point optimal solution for problem (P), and the proof is complete.

The algorithm always eventually terminates by the following result.

THEOREM 4. The algorithm terminates in a finite number o f steps.
Proof. Suppose, to the contrary, that the algorithm does not terminate in a

finite number of steps. Then step k.7 is executed an infinite number of times.
Therefore, in an infinite number of executions of step k.7, either (1) the point x j
in step k. 7(i) does not lie in VL, or (2) a point s in step k. 7(ii) is removed from
L.

Case 1. In an infinite number of executions of step k. 7, x] in step k. 7(i) does
not lie in VL. From steps k.1 and k.7(i), whenever x] N V L in some step, it is
added to the set VL in the next step. But each point x] is an extreme point of X,
and X contains a finite number of extreme points. The latter two statements imply
that it is impossible for x j not to belong to VL in an infinite number of executions
of step k. 7(i). Therefore, this case cannot occur.

Case 2. In an infinite number of executions of step k. 7, a point s in step k.7(ii)
is removed from L. From steps 0.1, 0.2, k .7 and k.8, L contains only extreme
points of X, and the only points ever added to L by the algorithm are extreme
points of X not already contained in L. Since X contains a finite number of
extreme points, this implies that it is impossible to execute the removal of a point

in step k. 7(ii) from L an infinite number of times. Therefore, this case cannot
occur.

It follows that the assumption that the algorithm does not terminate in a finite
number of steps is false, and the proof is complete.

Taken together, Theorems 3 and 4 imply that the algorithm is guaranteed to find
an optimal solution for problem (P) in a finite number of steps. Furthermore, the
optimal solution that it finds is an extreme point of X.

3.3. COMPUTATIONAL BENEFITS

The branch and bound-neighbor generation algorithm that we have presented for
problem (P) has several attractive computational benefits.

B R A N C H A N D B O U N D A N D N E I G H B O R G E N E R A T I O N l l

First, as shown in Section 3.2, it is guaranteed to find an exact, extreme point
optimal solution for problem (P) in a finite number of steps.

Second, it does not require f to be separable or even analytically defined. The
only requirement for f is that it be a real-valued concave function on some open
set Y in R n that contains X.

Third, the algorithm requires no nonlinear computations and no determinations
of convex envelopes or other underestimating functions.

Fourth, the linear programming problems solved during the branch and bound
search do not grow in size and differ from one another in only one column of
data. In particular, these linear programs are all of the form of problem (P~)
given in Theorem 1. Thus, they all contain (p + 1) constraints and (n + 1)
variables. Furthermore, for each n-simplex S j E T k in step k . 2 , the vertices of S j
are identical to those of its parent n-simplex S ~-1, except that in S j the vertex
- k - 1 x replaces one of the vertices v i of S k-1 As a result, the linear program (P,)
associated with S j which is solved in step k . 2 differs from the one solved earlier
for S k-~ only in the (p + 1) coefficients for A i in the objective function and in the
first p constraints. This implies that if the simplex method is used, for instance, to
solve the linear programs (Pz), the optimal basis found previously for the linear
program (P~) associated with S ~-a can be used as a starting basis for the simplex
method solution of the problem (P~) associated with S j. In this way, the linear
programs (P,) can, in general, be more quickly solved than they would be by
using the traditional Phase I-Phase II approach of the simplex method [13].

Fifth, the algorithm incorporates a fathoming procedure to save unnecessary
computations. In particular, in step k. 7(iii), if wf > UBk, the simplex S I is not
partitioned and no linear programs of the form (P~) that would be associated with
this partitioning process are solved.

The algorithm has other advantages. For instance, at each step of the
algorithm, an incumbent extreme point solution x c of X is available. This
incumbent solution, while not necessarily an optimal solution, may often provide
a user of the algorithm with a very good feasible solution for problem (P) when
the number of steps executed grows large and the algorithm must therefore be
prematurely terminated. In particular, the neighbor generation process can be
expected to enhance the quality of this incumbent solution.

4. Preliminary Computational Experience

We have written a computer code in C which implements the proposed algorithm.
We constructed 60 test problems, and used the code to solve these problems on an
IBM 3090 Model 600J mainframe computer. In this section, we describe the code,
the sources of the test problems, and the computational effort that the code
required to solve the problems.

It has been pointed out [2, 7, 15] that the difficulty of finding a globally optimal
solution to a concave minimization problem limits the sizes of problems solvable

12 H . P . B E N S O N A N D S. S A Y I N

by reasonable effort. Furthermore, the amount of reported information about the
computational behavior of existing algorithms is limited. Since there are not
generally-accepted test problems, we have constructed various test problems
partially based on some data in the literature. Our goals in constructing and
solving these test problems are limited. We merely sought to make some
preliminary conclusions about the algorithm.

The code uses the simplex-based subroutines of the Optimization Subroutine
Library [9] to solve the linear programming problems (P~) called for in the
algorithm. In each run, the initial simplex S O that contains X was constructed
separately using a method proposed by Horst [4]. The linear programming
problems required by Horst's method are also solved by the simplex method
procedures given in the subroutines of the Optimization Subroutine Library [9].
The branch and bound tree and the lists L and VL were maintained and
processed using dynamic data structures.

The test problems were constructed as follows. Using data from Pegden and
Petersen [17], we constructed eight nonempty, compact polyhedra of five different
sizes. Each size is defined by the number of rows (m) and the number of columns
(n) in the matrix B, where X = {x E R n I B x <= g, x >= 0}, and g ~ R m. Next, we
obtained six different types of concave functions from the literature to use as
objective functions. The forms and sources of these functions are given in Table I.
In function number 4, K represents any positive integer. We also obtained some
variations of these functions by appending linear terms, negative quadratic terms,
or both. Last, we combined the compact polyhedra with the concave functions in
various combinations to create five categories of 12 problems each, where a
category of problems is defined by the common size (m, n) of the feasible regions
of the problems in the category.

Table I. Some objective function forms

Function no. Functional form Source

- - X l n (j _ 1) X 3/2 1 + j~---- f - - - j [7]

2 - [1 + (j~l jx/)2] 1/z [71

3 - ,~11x , - In [l+ ,~ ix ,] [71

n n - - 1

4 -K~x~ + 2(~'~ xjxj+l) [101
j = l - i = 1 " '

5 -129x 2 + 242xlx z - 129x~ + 1258x~ - 1242x 2 [20]

(" :) (") 6 - E x In l+Y~x~ [71
- j = l - - j = l

BRANCH AND BOUND AND NEIGHBOR GENERATION 13

Table II. Computational results: averages

Category

m n Iterations Nodes Pivots Pseudo-pivots CPU time

4 5 13.08 44.08 89.83 82.50 1.94
8 6 6.67 20.75 42.92 100.50 1.83
3 7 0.42 2.00 10.08 24.50 1.58
3 8 0.50 2.42 10.25 28.70 1.57
5 10 10.25 42.83 97.58 330.80 2.42

For simplicity, we solved only problems in which each extreme point of X that

was encountered was nondegenerate. This shortened the code required to execute

the neighbor generation process. This part of the code uses simplex-type pivots,

which we call pseudo-pivots. Although the degenerate case can be handled by

pseudo-pivots as well, the process in this case can become rather complicated

[12, 13]. For this reason, in these initial computational experiments, we decided to

eliminate the problems in which degenerate extreme points were encountered.

For each solved problem, the computer code was executed until either an

incumbent solution was found with an objective function value guaranteed to be

within five percent of the optimal objective function value, or until the list L
became empty.

Statistics summarizing the results of our computations are given in Tables II

and III. In each table, five measures are used to evaluate the results: Number of

iterations of the algorithm, number of nodes created in the branch and bound

search (which equals the number of linear programs (P~) solved), total number of

simplex method pivots required to solve the problems (Px), number of simplex-

type pseudo-pivots, and the CPU time in seconds. Table II gives the averages of

these measures by category. In Table III , the minimum and the maximum for
each measure in each category are reported.

From Table II, we see that the computational effort required to solve these 60

problems does not necessarily monotonically increase as m or n increases. Also,

from Table III , we note that the variance in the computational effort needed to

solve the problems within a category can be relatively small or relatively large.

These two observations seem to suggest that structural factors other than problem

size significantly contributed to the computational effort required to solve these 60

Table III. Computational results: extremes

Category Iterations Nodes Pivots Pseudo-pivots CPU time

m n min max min max min max min max min max

4 5 0 22 1 73 6 148 5 120 1.57 2.19
8 6 0 20 1 58 7 130 6 198 1.57 2.21
3 7 0 3 1 8 7 27 21 42 1.57 1.63
3 8 0 2 1 6 8 19 24 40 1.48 1.61
5 10 0 62 1 283 11 756 30 1230 1.57 6.58

14 H. P. B E N S O N A N D S. SAYIN

problems. This is consistent with preliminary results obtained for other types of
global optimization problems (see, e.g., [2, 7]).

Although the code successfully solved each of the 60 test problems, we cannot
as yet draw any conclusions concerning its practicality for larger problems. More
computational testing will be required to investigate this issue.

References

1. Benson, H. P. (1985), A Finite Algorithm for Concave Minimization over a Polyhedron, Naval
Research Logistics Quarterly 32, 165-177.

2. Benson, H. P. and Erenguc, S. S. (1990), An Algorithm for Concave Integer Minimization over a
Polyhedron, Naval Research Logistics 37, 515-525.

3. Heising-Goodman, C. D. (1981), A Survey of Methodology for the Global Minimization of
Concave Functions Subject to Convex Constraints, Omega 9, 313-319.

4. Horst, R. (1976), An Algorithm for Nonconvex Programming Problems, Mathematical Program-
ming 10, 312-321.

5. Horst, R. (1984), On the Global Minimization of Concave Functions: Introduction and Survey,
Operations Research Spektrum 6, 195-205.

6. Horst R. (1990), Deterministic Methods in Constrained Global Optimization: Some Recent
Advances and New Fields of Application, Naval Research Logistics 37, 433-471.

7. Horst, R. , Thoai, N. V., and Benson, H. P. (1991), Concave Minimization via Conical Partitions
and Polyhedral Outer Approximation, Mathematical Programming 50, 259-274.

8. Horst, R. and Tuy, H. (1993), Global Optimization (Deterministic Approaches), 2nd Edition,
Springer, Berlin.

9. International Business Machines (1990), Optimization Subroutine Library Guide and Reference,
International Business Machines, Mechanicsburg, Pennsylvania.

10. Konno, H. (1976), Maximization of a Convex Quadratic Function Subject to Linear Constraints,
Mathematical Programming 11, 117-127.

11. McCormick, G. P. (1972), Attempts to Calculate Global Solutions of Problems that may have
Local Minima, in F. Lootsma (ed.), Numerical Methods for Nonlinear Optimization, Academic
Press, London, 209-221.

12. Murty, K. G. (1968), Solving the Fixed Charge Problem by Ranking the Extreme Points,
Operations Research 16, 268-279.

13. Murty, K. G. (1983), Linear Programming, Wiley, New York.
14. Parda!os, P. M. and Rosen, J. B. (1986), Methods for Global Concave Minimization: A

Bibliographic Survey, SIAM Review 28, 367-379.
15. Pardalos, P. M. and Rosen, J. B. (1987), Constrained Global Optimization: Algorithms and

Applications, Springer, Bedim
16. Pardalos, P. M. and Schnitger, G. (1987), Checking Local Optimality in Constrained Quadratic

Programming is NP-Hard, Operations Research Letters 7, 33-35.
17. Pegden, C. D. and Petersen, C. C. (1979), An Algorithm (GIPC2) for Solving Integer

Programming Problems with Separable Nonlinear Objective Functions, Naval Research Logistics
Quarterly 26, 595-609.

18. Rosen, J. B. (1983), Global Minimization of a Linearly Constrained Concave Function by
Partition of Feasible Domain, Mathematics of Operations Research 8, 215-230.

19. Soland, R. M. (1974), Optimal Facility Location with Concave Costs, Operations Research 22,
373-382.

20. Tuy, H., Thieu, T. V., and Thai, N. Q. (1985), A Conical Algorithm for Globally Minimizating a
Concave Function over a Closed, Convex Set, Mathematics of Operations Research 10, 498-514.

